Journal of Computational Physit€3,1-21 (2000)

®
doi:10.1006/jcph.2000.6480, available online at http://www.idealibrary.col DE &l.

A Fixed Grid Method for Capturing the Motion
of Self-Intersecting Wavefronts
and Related PDEs

Steven J. Ruuthi;! Barry Merrimani-? and Stanley Oshér

*Simon Fraser University, Department of Mathematics and Statistics, 8888 University Drive, Burnaby, Britis
Columbia, Canada V5A 1S6; antdniversity of California, Department of Mathematics,
405 Hilgard Avenue, Los Angeles, California 90095-1555
E-mail: sruuth@sfu.ca

Received July 7, 1999; revised February 16, 2000

Moving surfaces that self-intersect arise naturally in the geometric optics model
of wavefront motion. Standard ray tracing techniques can be used to compute these
motions, but they lose resolution as rays diverge. In this paper we develop numerical
methods that maintain uniform spatial resolution of the front at all times. Our ap-
proachis afixed grid, wavefront capturing formulation based on the Dynamic Surface
Extension method of Steinhoff and Fan (Technical report, University of Tennessee
Space Institute). The new methods can treat arbitrarily complicated self intersect-
ing fronts, as well as refraction, reflection, and focusing. We also develop methods
for curvature-dependent front motions and the motion of filaments. We validate our
methods with numerical experimentsg 2000 Academic Press
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1. INTRODUCTION

In the limit of short wavelength, it is well known that a wavefront moving through
medium can be described as a moving surface with a normal velocity that depends
position,

v = Cc(X)A,

wheref is the local normal to the front aradx) is the local wave speed. Notable examples
include the short wavelength approximation of seismic and electromagnetic pulses, as
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as the familiar example of ripples moving on the surface of a pond. An important featt
of this idealized wavefront motion is that intersecting wavefronts pass through each ot
and also that they reflect and refract off boundaries.

Many interesting numerical methods have been developed to compute these com
motions (see, e.g., [3, 5-7, 16, 17]). The most detailed approach is to discretize the gov
ing wave equations directly (e.g., [17]). Unfortunately, this approach is often impractic
because it requires that the discretization resolve the short wavelengths, which may
thousands of times smaller than the length scale of interest.

At the other extreme, standard ray tracing can be used to evolve wavefronts accort
to geometrical optics (e.g., [6]). Here, the front is represented using a number of marl
which are moved independently. This approach has the advantage of simplicity, but
markers tend to diverge, which leads to loss of resolution and aliasing of the front. It
however possible to maintain a uniform resolution of the front using rather sophisticat
(and often memory intensive) interpolation techniques. See, e.g., [9, 18].

To maintain a uniform resolution of the interface, it is natural to consider a fixed gri
interface capturing formulation such as the Level Set Method [10]. Here, the wavefron
represented as the zero contour of a smooth fungtiavhich in turn evolves according to
the level set equation.

¢t + c(X)|Vo| = 0.

This can be solved accurately and efficiently using numerical Partial Differential Equati
(PDE) techniques. Unfortunately, the basic level set method is inappropriate for treat
evolving wavefronts because the solutions to this PDE will have fronts that merge ug
colliding, rather than pass through one another. One of the key issues in developing fi
grid methods for evolving wavefronts is to sort the “branches” (an example of which is t
different fronts that occur in a swallowtail) because one can only interpolate between po
on the same branch. In standard ray tracing, branches can be traced along the marker:
fixed grid method, this is more difficult because points can represent different branche
the wavefronts evolve. See [4] for an algorithm that automatically sorts different branct
in two dimensions, which is based on direct resolution of Hamilton—Jacobi equations e
coupled to transport equations linked to the geometrical spreading.

To obtain a fixed grid method appropriate for capturing wavefront self-intersectic
Steinhoff and Fan [13] and Steinhadt al. [14] proposed Dynamic Surface Extension
(DSE) methods. These schemes start from some spatially distributed representation c
wavefront (similar to, but more general than, the levelsepresentation), and the motion
is achieved by alternating between two steps: a simple short time evolution comparabl
ray tracing (but carried out on a fixed grid), and an extension step that updates the distribi
representation to reflect the new front location. DSE methods automatically give a unifc
resolution of expanding fronts by using a fixed spatial grid, and the fronts automatica
pass through one another rather than merging.

The original DSE methods are not well suited to certain fundamental self-intersecti
problems such as the formation of swallowtails. In this paper, we develop a DSE scheme
Arrival Time DSE Method) to handle this fundamental problem as well as all other compl
intersections, including reflecting wavefronts and the motion of filaments (or more genere
objects of codimension1). We also discuss new methods for propagating intensity value
and for treating curvature-dependent flows and refracting wavefronts.
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The outline of the paper follows. In Section 2, we review the Closest Point DSE Meth
and discuss its key properties. In Section 3, we give a new method (the Arrival Tit
DSE Method), which produces a much more uniform representation of the wavefrc
Sections 4 and 5 explain how to extend the basic method to problems involving refract
and reflection. In Section 6, we describe how to treat intensity by retaining other attribute
the wavefront, such as wavefront curvature. Section 7 extends our approach to more ge
curvature-dependent motions. Finally, in Section 8 we summarize our results and out
some potential areas for future research. Throughout the paper, numerical experiment
provided to validate our methods.

2. THE CLOSEST POINT DSE METHOD

To evolve self-intersecting wavefronts on a fixed grid, Steinhoff and Fan [13] propos
Dynamic Surface Extension methods. The methods solve a separate, auxiliary proble
addition to solving the equations of motion of a moving surface. This auxiliary proble
involves propagating information through space away from the surface as invariants al
characteristics or rays. These invariants are a set of variables, termed the “Defining Fielc
a surface, defined for each ray, that can be any sort of data that can be used to algebra
compute the coordinates of the point of intersection of the ray with the surface. This se
invariants can also include other quantities such as wavefront intensity or radius of curva
at the point of intersection. It is this separate propagation of invariants with these partict
properties that enables fronts to automatically pass through one another rather than mer

The cornerstone of DSE methods is to choose a suitable distributed representatio
the wavefront surface. The form of this representation depends on the problem, and
dictated by the information required to accurately and efficiently evolve the surface. |
example, one might store at each point in spaegepresentation of the surface near soms
“tracked point"TP(x) located on the surface. A two-step scheme is then used to evolve t
distributed representation for a short time. First, theEvolution Step updates the local
surface representation at eaxtbased on the surface motion law®®(x). During this
evolution, the representation may develop inconsistencies or become less well behavec
this is repaired in the second step, whittendghe representation from near the wavefront
(where it is most accurate) to points farther away, perhaps reassigning new tracked pe
TP(x) to eachx in the process. Note that a variety of other surface properties such
optical intensity may considered as part of the “representation,” and these can be evo
and extended off the interface in this manner as well [14].

A particularly instructive DSE scheme is based on storing the actual coordinates of
closest point on the surface. (See [13, 14] for a closely related scheme that also st
information for the closest point on the surface, but using a different set of variables.)
this section, we describe this Closest Point DSE Method and discuss its key proper
Improvements and extensions to this basic method will be the focus of subsequent sect

2.1. The Method

To construct a DSE scheme for wavefront propagation we must first select an approp!
distributed wavefront representation, i.e., one well suited to representing self-intersec
surfaces. For contrast, note that the level set method relies on a particular distributed su
representation, namely the level set functifxix). This is often taken to be the (shortest)
distance fromx to the surface, with suitable signs. In the language of DSE, this can |
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viewed as letting the tracked pointatTP(x), be the point on the wavefront closesto
CP(x), and the only local information we retain about the wavefront near this point is i
distance tx (with a sign). However, this representation (igd.naturally produces mergings
(or curve annihilation) rather than allowing curves to pass through one another [10].

A better behaved and more convenient alternative is to store the coordinates of
closest point itself, rather than just its distance; i.e., we represent the wavefront by
value of the vector valued functioBP(x). This is smooth on the wavefront near self-
intersections (although it does have discontinuities off the wavefront, at points that
equidistant between different parts of the surface). Further, this choice can equally v
represent geometries for which the distance function would be highly singular, such
wavefronts with boundaries (i.e., a nonclosed surface in 3D, or a curve with endpoints
2D) or objects of any codimension (e.g., points, curves, or surfaces in 3D). Also, note t
a closest-point representation is constamtmalto a surface whereas a distance function
representation (such as that used in level set methods) is coastgantiato a surface [14].

For moving wavefronts, we must specify some additional piece of information since the
are at least two possible normal directions (more at kinks) for any curve or surface.
prefer to store a unit vector in the direction of propagation because this choice automatic
generalizes to objects of arbitrary codimension. Using this representation in the Dynal
Surface Extension approach gives the Closest Point DSE Method (CPDSE Method)
moving a surfac& c R" normal to itself with a speed (which may depend on position):

The CPDSE Method

Initialize. For each poink € R": Set the initial tracked pointP(x) equal to the closest
point (to x) on the initial surfacd’y. Seti(x) equal to the surface normal at the tracked
point TP(x), and letc denote the wavefront speed at the tracked point.

Repeat for all steps:

(1) Evolvethe tracked poinfTP(x) according to the local dynamics for a timgt:
TP(X); = ch(X).

(2) Extendthe surface representation by resetting each tracked pB{r) equal to the
true closest point on the updated surf&Gevhererl is defined to be the locus of all
tracked points, ie]'={TP(y) | y € R"}. Replace eacli(x) by the normal at the
updatedlP(x).

End.

Intuitively, the manner in which this method treats self-intersection is most easily u
derstood by considering how it treats two colliding, planar waves. Initially, each nod
tracked point value is set equal to the closest point on the nearest wavefront (Fig. 1a). Tl

CP(x),
CP(
TP(x)

(a) Initialization (b) Evolution (c) Extension

FIG. 1. Two colliding planar waves and a sample grid nod€a) To initialize, the closest poi@P(x) of
the nearest wavefront is stored. (b) Evolution is carried out pointwise accordii(xg, = ci(x). (c) During the
Extension Step, nodal values are set equal to the values at the true closest point.
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tracked points are updated during the Evolution Step accordifig(to "= TP(x)°r9nal

cn(x) At (Fig. 1b). Notice thatthe updated tracked points are no longer the true closest poi

Finally, the Extension Step resets each nodal value to be a true closest point (Fig. 1c).
We now direct our attention to the Extension Step of the CPDSE Method.

2.2. The Extension Step

In practice, the Initialization Step of the CPDSE Method can often be handled analytice
in simple problems. More complicated wavefronts can be treated using fast tree-be
algorithms [15]. Implementation of the Evolution Step is also straightforward because e
tracked point is just updated accordingTB(x)"®"=TP(x)°"9"a 1 cA(x)At. The final
Extension Step is more complicated and is typically divided into two parts, a search s
and an interpolation step (cf. [14]).

In the search step, the updated tracked point value for each node is set equal tc
closest of all tracked points from the previous step (localization of this step is possible—
Section 3.3) [14]. Normal values are also transferred during this procedure. (Recall 1
there is a normal value stored at each node as well as a tracked point. Once the close
all tracked points is found, its normal direction is also known because both tracked pc
and normal values are stored at the same node.) This gives an improved approximatic
the closest point representation. Unfortunately, this process cannot create any new tra
points so diverging wavefronts will lose resolution. Thus, a second interpolation stey
needed in order to maintain a uniform representation.

Steinhoffet al.carry out this interpolation by averaging over nearby nodes [14]. This vel
simple approach is effective for a variety of interesting problems [14], but it can produ
spurious wavefronts in certain cases and is low order accurate. For these reasons, we col
a higher order interpolation based on nearby neighbors. These neighbors (cajl #mein
z) are chosen so that, y, andz are collinear and roughly parallel to the wavefront (see
Fig. 2). If the tracked points fox andy are distinct and lie on the same smooth curve, the|
an improved estimate for the closest poinktoan be generated using the nodal values ¢
x andy (see Fig. 3). Similarly, an improved closest point estimate can be attempted us
the nodal values at andz. The closest of these two resultsxds taken to be the updated
tracked point value. The updated normal value is set equal to a unit vector parallel to
updated tracked point minus the center of curvature of the interpolating curve. (The sig|
this unit vector is easily determined since its dot product with the normals for the endpoi
of the interpolating curve must be positive or else no interpolation occurs.)

Notice that this Extension Step does notyield a true closest point representation. Howe
closest point values are expectaehrthe wavefront. Furthermore, this extension has th
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FIG. 2. For a nodex we interpolate using 3 pointx(y andz) which are roughly parallel to the wavefront.
Taking® to be the anglex-y)~ forms with the horizontal axis we find 4 casesin 2D¥ay 0 < %’ or %’ <6< %

b)—-f<f<ZorZ<o<Z (O)L<0<ZorT<pg<B ()TL<g<Torr<g<i,
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TP(x) \rAl_(X)
CP(x) X
TP(y) ¢

(a) Points far apart (b) Normals disagree (c) Consistent case

FIG. 3. (a) If the tracked point3P(x) andTP(y) for nodesx andy are far apart|| TP(x) — TP(y)|| > 2AX)
then we takd P(x) to be the best estimate for the closest point i) If the corresponding normals are inconsistent,
we takeTP(x) to be the closest point estimatexoHere, we assumeP(x) andTP(y) lie on different wavefronts
whenever the angle between their normals is greater than 0.2. (c) Otherwise, an arc is drawn Betweand
TP(y) based oiTP(x), TP(y) andf(x). The desired estimate is given by the closest point on the atc to

useful property that every nodal value represents some tracked point on the wavefr
Note also that every tracked point has a well-defined direction of propagation, even th
corresponding to points on the surface (such as corners), which do not have a well-def
normal value.

We now direct our attention to how the CPDSE Method treats two prototype problel
in wave propagation: rarefaction fans and swallowtails.

2.3. Numerical Experiments

We now apply the CPDSE Method to the problem of evolving wavefronts according tc
constant normal velocityj = cfi. In these experiments, each front is plotted simply as th
locus of all tracked points at a given tim@,P(x) | x € G}, whereG is a uniform grid of
points on the domain.

First, consider the motion of a square curve moving outward with unit speed, as is shc
in Fig. 4. Using the CPDSE Method, a rarefaction fan is automatically and uniform
generated. Notice that the Evolution Step always yields a closest point representatior
the Extension Step does not change the tracked gdmx). Thus, the overall error is
comprised entirely of roundoff errors generated from the Initialization and Evolution Stej

An entirely different swallowtail solution also occurs in many problems. For exampl
consider an ellipse moving inward with unit speed (e.g., Fig. 5). Here, the front forms t\

() 02 04 06 08 1 ] 02 04 08 08 1 o 02 04 06 08 1

FIG.4. Rarefactionfansare given exactly by the CPDSE Method. Here, awavespeed equal to 1 was consid:
Discretization step sizes @fx = 1/80 andAt = 1/40 were used throughout the calculation. In this example (anc
others throughout the report), wavefronts are visualized by plotting all nodal values. Notice that this sim
visualization can produce a dotted effect when the curve is aligned with the grid.
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FIG. 5. An ellipse evolving inward with unit speed: (a) initial ellipse, (b) Kinks form, (c) wavefront passe
through itself to form a swallowtail.

kinks (Fig. 5b) and passes through itself to form a swallowtail (Fig. 5¢). Unfortunately, tf
swallowtail solution is not adequately reproduced using the CPDSE Method. See Fig. €
an illustration of how this flaw causes gaps in the surface which propagate and grow. (A
which essentially coincides with the exact solution is given in Fig. 10 in the next sectior

Thus this CPDSE Method is inadequate for treating the prototype swallowtail proble
Indeed, we shall see in the next section that this deficiency is inherent to closest point re
sentations because they overrepresent corners when they are applied globally. Fortun
an alternative approach based on the idea of first arrival times is possible. This apprc
will be the focus of the next section.

3. FIRST ARRIVAL TIMES

As demonstrated in the previous section, the CPDSE Method can produce gaps ir
surface. We now discuss a new method which gives a much more uniform represente
of the surface, and we validate our approach with numerical experiments.

( 02 04 06 08 1 ] 02 04 06 08 1 ] 02 04 06 08 1

FIG.6. Using the CPDSE Method, swallowtails are not accurately reproduced. Gaps in the surface form,
these propagate and grow. Here, a wavespeed equal to 1 was considered. Discretization step sizek/80
andAt = 1/40 were used throughout the calculation.
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FIG. 7. (a) When a swallowtail is small, the nodal values overrepresent corners. (b) Because large reg
are used to represent corners, only the small shaded region is left to capture the end of the swallowtail. This ¢
region will contain few (or no) grid points after the swallowtail is first formed.

3.1. The Method

The formation of gaps for the CPDSE Method is most easily understood by consider
how swallowtails are represented.

Consider, for example, the swallowtail representation shown in Fig. 7a. When the sw
lowtail is small, nodal values overrepresent corners. Since large regions are used to re
sent corner points, few grid points are available to represent the end of the swallowtail (
Fig. 7b). This uneven treatment leads to gaps in the surface which propagate and grow

To obtain an improved result, a more uniform representation is needed. For example
can set each nodal value to be the point on the wavefront witlmihamal arrival time
rather than the minimal distance. The minimal arrival time is the minimal time for the fron
to reach the considered grid point when wavefront surfaces are front or back propagate
a homogeneous medium, without reflection, this implies that each nodal value is set e
to the closest point on the wavefront that propagates directly to or from the node. Us
this representation, we find that redundancy is largely eliminated, and a greatly impro
approximation of the swallowtail is obtained (see Fig. 8). Unfortunately, arrival times a
often difficult and expensive to evaluate in the variable index of refraction case or wh
reflections occur. Furthermore, even in a homogeneous medium, this approach requil
more intricate search step since nodal values can only be updated when a nearby tra
point travels directly towards the node (which rarely occurs).

Of course, we are not limited to representations that minimize distance or arrival times:
minimization based on some combination of distance and direction of motion can alsc
carried out. A particularly interesting choice arises when nodal values are set equal to

FIG. 8. Minimizing arrival times rather than distance gives a more uniform representation of the surface.
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“Minimizing Point”

MPOO = min v 1(x = TP(Y) - ()| + 1x = TRY) (1)

for y > 0. Notice that this gives a good agreement with the minimal arrival time represen
tion near the wavefront: The first term alone equals zero for all points on the surface wr
reachx when the surface is propagated or back propagated for a sufficiently long time.
second term selects the nearest of these minimizing points.

Combining these ideas leads to the following modification of the CPDSE Method:

TheArrival Time DSE Method (ATDSE Method) :

Initialize. For each poink: Set the tracked poifitP(x) equal to the minimizing poin¥IP(x)
on the initial surfacd’ for the minimization in Eq. (1). S€i(x) equal to the normal at
MP(x).

Repeat for all steps:

(1) Evolvethe tracked poinfTP(x) according to the local dynamics for a timst:
TP(X)t = cA(X).

(2) Extendthe surface representation by replacing each tracked fgéiot) by the
point MP(x) on the updated surfadé={TP(y) | y € R"} that minimizes Eq. (1).
Replace each(x) by the normal at the updatédP(x).

End.

In practice, the performance of the method is rather insensitive to the chojce- 6f
(y should be finite—a method with an infinitehas the deficiency that it does not prefer
nearby wavefronts over distant ones), and so we simplytaké in all our simulations (over
the unit square). As we shall see next, this simple method gives a uniform representatic
wavefronts and naturally treats the prototype swallowtail problem.

3.2. Numerical Experiments

Consider an ellipse evolving inward with unit speed as is shown in Fig. 5. As discuss
in the previous section, the CPDSE Method produces large gaps in the surface. A r
more uniform representation of the swallowtail is derived using the ATDSE Method (s¢
e.g., Fig. 9). Over large times, this improvement leads to dramatically superior results
can be seen by comparing Figs. 6 and 10.

e 03 \ I
o082k / \ N os2f | }'
0511 as1f .
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sl [ \ / E oaaf | i
! \ 1 0471 \ 1
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FIG.9. (a)Usingthe CPDSE Method, the end of the swallowtail is lost. (b) By minimizing first arrival times
a good representation of the entire wavefront is obtained.
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FIG.10. Usingan approximation to firstarrival times, a uniform representation is achieved. Here, awavesp
equal to 1 was considered. Discretization step sizeax& 1/80 andAt =1/40 were used throughout the
calculation.

Of course, we also want an estimate of how closely each tracked point approxime
the true surface. Analytically, a®((Ax)3/At) error should be produced over the length
of the computation because time steps are carried out exactly (to within roundoff) an
guadratic interpolation step is used. In practice, we find that tracked points remain clos
the true solution surface. For example, in the test problem of Fig. 10f a very small er
(measured as thie;-distance of the tracked point$>(x) from the true solution surfade)
was produced that declined rapidly wittx. See Table I.

We now direct our attention to localization methods for improving the efficiency of DS
schemes.

3.3. Localization

In previous sections, the search step was carried out globally. Although simple, t
approach can be expensive because at each grid point, all other tracked points mu

TABLE |
Errors for an Initial Ellipse, Mea-
sured aslL ;-Distance of Tracked Points
from Exact Solution Surface

AX Error
1/20 1.4e-6
1/40 3.7e-7

1/80 1.5e-8
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searched for a new minimizing point, leading@gn?) operations per time step, wheme
is the total number of grid nodes.

Alternatively, a local search can be used over a raRingeach grid node [14] to achieve
an O(n) operation count per step. Notice that in this case we must choose

R > cAt (2)

because information about the wavefront should propagate more quickly than the wavef
itself [14]. Of course, this is a necessary and not a sufficient condition. In practice
appropriate value oR will depend strongly on the problem. Indeed, much larger values «
R are typically needed to treat interesting problems involving swallowtails. For examp
to obtain a good representation of the evolving wavefronts shown in Fig. 10 requires t
R> 1/8 whenc=1 andAt =1/40.

In our formulation, each grid node value represents some tracked point on the wavefr
This fact allows us to design an algorithm that searettidsacked points in a neighborhood
of the wavefront rather than a few tracked points in a neighborhood of each node.
proceed as follows:

1. Initialize the updated nodal values for each ned&P(x)"*"= TP(x) andfA(x)""=
A(x).
2. Evaluate

F(p. TP(X), A(X)) = [(p = TP(X)) - A ()] + | p — TPX) |12 3

for each tracked pointP(x) and its corresponding normal val@i€x) and each node
which lies inside a disc of radius centered at the wave-front poifitP(x). Whenever
F(p, TP(X), (X)) < F(p, TP(p)"Y, Ai(p)"") an update is made to the new nodal values
TP(p)"*"=TP(x) andA(p)""=A(x).

Notice that this approach has the advantage that all tracked point information near
wavefront is instantaneously propagated globally away from the wavefront, so the prc
gation speed requirement (2) no longer applies racdn be selected independentlyaf
andAt.

This localization naturally leads to some modifications of the Extension Step. First, ol
nodes which are within a distancef the wavefront should be used for interpolations since
only these nodes are updated during the search. Also note that searching according to E
can cause neighboring nodes to represent different wavefronts (see Fig. 11b) which m
interpolation impossible. Because the CPDSE Method does not exhibit this shortcornr
(see Fig. 11c), we carry out the Extension Step twice in the localized algorithm—or
with a search that minimizes distance and once using Eq. (1). Whichever result minimi
expression (3) is used as the updated value at each node.

We have found that this simple, fast approach gives excellent results in a wide variet
problems. In particular, the examples in the next three sections are carried out using
localization®

3We use a radius of four cells throughout. This is somewhat arbitrary: Other values appear equally effec
For example, using a radius of just two cells a solution of the swallowtail problem can be computed that essent
coincides with the global result shown in Fig. 10.
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ye y —(
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Ze z «—(C

(a) (b)

FIG. 11. (a) Before the search step. Consider 3 nodes andz and several neighboring tracked points:
(b) After the search step. If we search according to Eq. [1], the nodal valxesledescribe the second wavefrant
since|(x — TP(x))-At (X)| < |(x — TP(y)) -t (y)|. Neighboring values will belong to the first wavefront. Because
TP(x) belongs to a different wavefront than its neighbors, no interpolation will occxiaad resolution may be
lost. (c) After the search step. If we search according to distance, an interpolation at isquessible based on
the tracked point$P(x) andTP(z) and the normaf(x).

€2

4. REFRACTION

The ATDSE Method described in the previous section applies to homogeneous me
In problems where the wavespeed is piecewise constant, the direction of propagation
change as the wavefront moves from one material to another. Specifically, the angle
refraction will be given by Snell’'s Law

Sno) = arcsir(ib sin(@)) (4)

wheref is the angle of incidence of the ray angdandcy,, are the wavespeeds in the original
and final media (see, e.g., [8]).

To apply the ATDSE Method to this refractive case, we must take Snell's Law in
account in the Evolution Step. The Extension Step of the algorithm remains unchang
Figure 12 gives a simple example of a refracting wavefront treated using this approe
For the variable index of refraction case, we proceed in a similar fashion, except now
Evolution Step is governed by the ray equations (see [8]),

d2x 2
e =%(%) ©
X2 = n(X)?, (6)

whereX is the coordinate of the ray being traced (or in our language, the coordinate of
tracked point) and(X) = 1/c(X) is the variable index of refraction.

Of course, physically, we expect that a reflected wave will also be produced whel
wavefront passes from one material to another. Fortunately, these reflected component
straightforward to treat using methods discussed in the next section.

5. REFLECTION

When a ray traveling in a medium encounters a boundary, part of the incident ray
reflected back into the medium. Very often, the direction of propagation of the reflect
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FIG. 12. Refractionis handled by applying Snell’s Law in the Evolution Step. Here, the wavespeedis 1in 1
upper regior(x, y) :y > 1/2— 0.2 cog2r x)} and %/2 in the lower region. Discretization step sizes\of = 1/80
andAt = 1/20 were used throughout the calculation.

wave will be given by the Law of Reflectiothe angle of reflection equals the angle of
incidence

To apply the ATDSE Method to the reflective case, we must take the Law of Reflecti
into account in the Evolution Step. The Extension Step of the algorithm remains unchang
Figure 13 gives an interesting example of a reflecting wavefront treated using this appro.
Although this simple method gives a very good representation of the surface, small g
occasionally form where wavefronts cross (see Fig. 13f). These gaps arise when too
grid points are used to represent complicated reflecting wavefronts. See Fig. 14.

Fortunately, this problem can usually be overcome simply by refining the mesh (:
Fig. 16a). In more complicated problems, two tracked points may be stored at each noc
one for parts of the wavefront that have reflected an even number of times, the othet
parts that have reflected an odd number of times. As shown in Fig. 15, this approach giv
more uniform representation of reflected kinks and an improved treatment of complica
wavefronts.

We now direct our attention to another important property of wave propagation: t
intensity.

6. INTENSITY

Previous sections evolved wavefronts by propagating both position and normal val
away from the surface. In this section, we describe how to treat intensity by retaining ot
attributes of the wavefront, such as wavefront curvature. Numerical experiments are
carried out to validate our approach.
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FIG. 13. Reflections are handled by applying the Law of Reflection in the Evolution Step. Here, a wavespe
equal to 1 was considered. Discretization step sizeax& 1/80 andAt =1/20 were used throughout the
calculation.

FIG. 14. (a) When a kink reflects from a boundary, a rather complicated wavefront develops. (b) There
too few grid points to represent dashed segments, so gaps form in the surface.
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FIG. 15. If even (a) and odd (b) reflections are represented separately, then a more uniform treatment of
wavefront is obtained.
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FIG. 16. Small gaps that form may be eliminated by (a) refining the mesh (here we havetake/115)
or (b) treating odd and even reflections separately (here- 1/80).

6.1. The Method

To develop a method for evolving intensity values, we make use of a simple observati
Away from degenerate cases, the intensity of a ray at tinsegiven by the intensity at
an earlier timetg, multiplied by theexpansion rati¢f £(to, t). As shown in Fig. 17, the
two-dimensional expansion ratio for a homogeneous medium is just the initial radius
curvature divided by the final radius of curvature; i.e.,

p(to)
§(to, t) = — . )
P
In three dimensions, it is easily shown [8] that the expansion ratio for a homogene:
medium becomes

p1(to) p2(o)
p1®)pa(t)
wherep; andp, are the principal curvatures of the wavefront surface.

Thus, intensity values may be propagated along a ray using just the initial intensity, ti
and principal curvature values. For example, in two dimensions the intensity is given b

p(to)
@) = lg| ———— 9
© °(p<to>+c(t —to)) ©)

E(to, 1) = (8)

in terms of these quantities. Notice that this simple analytical approach applies even w
the intensity is infinite (e.g., at a focus) at some intermediate time. Indeed, even degene
cases (i.e., the radius of curvature is initially zero) may be treated analytically. See [8]
further details.

When a wavefront is reflected or refracted, however, curvature and intensity values
change and Eq. (9) cannot be used. Fortunately, updated values for these quantities are
calculated. After reflection, intensity is unchanged and the curvature of a 2D wavefron

4The expansion ratids a measure of the expansion of the cross-section of a tube of rays. See Fig. 17 fc
derivation of the expansion ratio in two dimensions and reference [8] for a derivation in the general case.
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Wavefront at time t —

Wavefront at time t,—~
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FIG. 17. In two dimensions, the expansion ratio is the initial length of a wavefront element divided by tt

; ; __dLtg) _ 6pltp) _ pltp)
final length. For a homogeneous mediutty, t) = Fr 3 = 78 = =%

given by

2

m’fboundary (10)

Kreflected= Kincident —

wherexincigent IS the curvature of the incident wavefroft,s the angle of incidence and
Kkboundary IS the curvature of the reflective surface. After refraction, the curvature of a 2
wavefront is given by

S (6) Sn@@) -1
Krefracted= > Kincident+ Kboundary (11)
V1t (1= (2)?)tarke) 1 (2 sin@))

where SN(9) is the derivative of Snell's Law (4)poundaryiS the curvature of the boundary
between media and, andc, are the propagation speeds in the original and final medic
Updated intensity values after refraction are given by

|refracted _ COX@)
Iincident COS(SI’(@)) -

(12)

Thus, we treat intensity by storing curvature and intensity values at an initialt§ime
(which is also stored). These stored values are updated (using Egs. (10-12)) whene
reflection or refraction occurs, to give an explicit formula (9) for intensity.

We now use this approach to evolve the intensity of a propagating, two-dimensiol
wavefront and compare our results to standard ray tracing.

6.2. Numerical Experiments

Consider the evolution of the initially circular wavefront given in Fig. 18a. Using th
methods of the previous section, intensity values are determined for each tracked p
after a variety of reflections and refractions. A color visualization of these intensity valu
is given in Fig. 18. Plotting the intensity as a function of arclength for the lower curve
t =0.75 gives the results in Fig. 19. These intensity values agree well with the exact solut
since they have less than a 2% relative error (as measured in the maximum norm) w
compared to a well-resolved ray tracing calculation.

In all our calculations, intensity and curvature values for new (i.e., interpolated) poir
are derived by linearly interpolating the values of neighboring points at the current tin
Higher order interpolations may be preferred when very accurate results are sought.
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FIG. 18. Intensity is calculated by propagating out curvature values. Here, the wavespeed is 1 in the mic
region {(x, y):0.2+ 0.1 cog2nx) <y <0.5—-0.1cog27x)} and %2 in the upper region. Discretization step
sizes ofAx =1/80 andAt = 1/20 were used throughout the calculation.

7. CURVATURE-DEPENDENT MOTIONS

In previous sections, we described methods for evolving wavefronts according to positi
dependent velocities. However, asymptotic models for physical processes often yield e
tions of motion for a surface moving with a velocity that is a function of its loca
geometry, i.e., a function of local normal, curvature, and derivatives of these quanti
[11, 12, 19]. Toward this end, we now consider an extension of the CPDSE Meth
to more general curvature-dependent motions and validate our approach with nume
experiments.

0.9

0.8

0.7

Intensity
o
o

o
kS

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1 1.2
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FIG. 19. Intensity as a function of arclength for the lower curve of Fig. 18f.
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7.1. The Method

A patrticularly fundamental motion arises when the normal velocity equals the me
curvature of the surface. For this important case, a simple DSE scheme can be constru
Moreover, this scheme applies to motion by mean curvature for objects of any codimens
To illustrate this, we will develop the model for the arbitrary codimension case, and apj
it to a curve in three dimensions with a velocity equal to its vector curvatfire

We begin by noting that the vector mean curvature for a surface of arbitrary codimens
is given by

Kh = —AV(d—ZZ), (13)

wherex is the local mean curvature amdis the distance to the surface (see, e.g., [1])
Taking into account that

dvd = x — CP(x),

whereCP(x) is the closest point t& on the surface we obtain a very simple expression fo
vector mean curvature:

Kk = —A(X — CP(X)) = ACP(x).

Thus, motion by mean curvature for surfaces of arbitrary codimension can be achievec
replacing the Evolution Step of the CPDSE Method by

TP(X)t = ATP|px

to give a method for mean curvature motion,

The Closest Point Method for Mean Curvature Motion:
Initialize. For each poink € R": Set the initial tracked pointP(x) equal to the closest
point (tox) on the initial surfacd.

Repeat for all steps:
(1) Evolvethe tracked poinfTP(x) according to the local dynamics for a tinmt:
TP(X)t = ATPltp)-
(2) Extendthe surface representation by resetting each tracked p&if¢) equal to
the true closest point on the updated surfB¢evherel is defined to be the locus
of all tracked points, iel’ = {TP(y) | y e R"}.
End.

Other curvature dependent velocities are possibly by replacing the Evolution Step b
TP(X)( = F(ATP|TP(X) . ﬁ) f

sincex = ACP|cp() - N. Of course, itis crucial to evaluate the Laplacian term at the close
point since Eq. (13) is only validt the surface
We now validate our algorithm with some numerical experiments.
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FIG. 20. The curvature motion of a filament, = «f.

7.2. Numerical Experiments

For our final example, consider the curvature motion of a periodic spiral in three dime
sions,

X = 0.4sin(2rs),
y = 0.4co92rs),

Z=S.

Here, it is easily shown that the exact solution is also a spiral, but with a radius that shri
according to the ordinary differential equation,

¢ r
= le .
Using the algorithm of the previous section, the maximum error in the position of tl
filament at timet = 0.1 was computed for severalx and At was taken to bé(Ax)2 in
order to achieve stable results. The results for a number of experiments are reporte
Table Il. These results are suggestive of an approximately second order error in the pos
of the front.

In all calculations, the standard second-order finite difference approximation of 1
Laplacian was used with forward Euler time stepping. Interpolated values of the Laplac
were derived using linear interpolation. Extension Steps were carried out by fitting a spl
to the filament and reinitializing the closest point representation at each step. Note that
simple discretization assumes that there are no mergings. It would be particularly in
esting to develop efficient numerical methods for intersecting wavefronts and study tt
theoretical properties (e.g., convergence, CFL restriction, etc.).

TABLE Il
Errors for the Curvature Motion of a Filament
AX Error Convergence rate
1/10 0.00688 —
1/20 0.00159 2.1

1/30 0.00071 2.0
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8. SUMMARY AND TOPICS FOR FUTURE RESEARCH

In this work, we have considered a class of Dynamic Surface Extension methods bz
on an approximation of first arrival times instead of closest points. Our approach use
spatially distributed representation of the surface that maintains a uniform and balan
resolution during the formation of complicated self-intersecting fronts (such as swallo
tails) which are not well treated by the original Closest Point DSE Method. Simple methc
for treating refraction, reflection, and intensity are also provided and validated with r
merical experiments. Finally, a surprisingly simple generalization is given for interesti
geometric motions, such as mean curvature flow. As with other DSE schemes our mett
automatically treat points, filaments, and surfaces of arbitrary codimension, which we h
illustrated with curvature motion of a filament in three dimensions.

A variety of interesting topics for future research are still open. For example, noti
that our approach requires a thresholding step to determine when interpolations occur
Section 2.2). As we saw throughout the paper, it is often adequate to base this threshol
on the position and normal values of tracked points. Of course, no single thresholc
adequate for all problems. It would be interesting to investigate robust decisions ba
on propagating out other quantities. For example, one might consider propagating ini
position and normal values along each ray (cf. [16]), since interpolations can only oc
when these quantities are approximately equal.

Other potential areas for future research include studies of the method’s three-dimensi
performance (cf. [14]), especially for optical intensity calculations. It would also be ve
interesting to extend the method to include the effects of geometrical diffraction (cf. [8
i.e., the bending of the wavefront as it passes by an obstacle.

There is also a great deal to explore in terms of using this type of representatior
move objects of more complex topology and geometry, such as surfaces with bounde
(or curves with endpoints), objects of composite topology (such as a filament attached
sheet), and surfaces or curves with triple point junctions.

Another major direction would be to couple these self-intersecting wavefront repres:
tations to physical processes occurring off the surface. For example, it would be interes
to treat the case of multiply intersecting shock wave fronts coupled to surrounding gas
namics. Note that DSE methods are particularly well suited for coupling to Eulerian coc
because both utilize fixed computational grids.

Finally, further work in the area of curvature-dependent motions is also possible. Co
putationally, the construction of fast extension methods for general surfaces of arbitr
codimension would be of great practical importance. Theoretically, it would be interesti
to study the convergence properties of the method. It would be particularly interesting
determine if surfaces fatten (or develop interiors) when mergers occur. See [2] for a deta
discussion on the “fattening phenomenon.”
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