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Moving surfaces that self-intersect arise naturally in the geometric optics model
of wavefront motion. Standard ray tracing techniques can be used to compute these
motions, but they lose resolution as rays diverge. In this paper we develop numerical
methods that maintain uniform spatial resolution of the front at all times. Our ap-
proach is a fixed grid, wavefront capturing formulation based on the Dynamic Surface
Extension method of Steinhoff and Fan (Technical report, University of Tennessee
Space Institute). The new methods can treat arbitrarily complicated self intersect-
ing fronts, as well as refraction, reflection, and focusing. We also develop methods
for curvature-dependent front motions and the motion of filaments. We validate our
methods with numerical experiments.c© 2000 Academic Press
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1. INTRODUCTION

In the limit of short wavelength, it is well known that a wavefront moving through a
medium can be described as a moving surface with a normal velocity that depends on
position,

Ev = c(x)n̂,

wheren̂ is the local normal to the front andc(x) is the local wave speed. Notable examples
include the short wavelength approximation of seismic and electromagnetic pulses, as well
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as the familiar example of ripples moving on the surface of a pond. An important feature
of this idealized wavefront motion is that intersecting wavefronts pass through each other,
and also that they reflect and refract off boundaries.

Many interesting numerical methods have been developed to compute these complex
motions (see, e.g., [3, 5–7, 16, 17]). The most detailed approach is to discretize the govern-
ing wave equations directly (e.g., [17]). Unfortunately, this approach is often impractical
because it requires that the discretization resolve the short wavelengths, which may be
thousands of times smaller than the length scale of interest.

At the other extreme, standard ray tracing can be used to evolve wavefronts according
to geometrical optics (e.g., [6]). Here, the front is represented using a number of markers
which are moved independently. This approach has the advantage of simplicity, but the
markers tend to diverge, which leads to loss of resolution and aliasing of the front. It is
however possible to maintain a uniform resolution of the front using rather sophisticated
(and often memory intensive) interpolation techniques. See, e.g., [9, 18].

To maintain a uniform resolution of the interface, it is natural to consider a fixed grid,
interface capturing formulation such as the Level Set Method [10]. Here, the wavefront is
represented as the zero contour of a smooth functionφ, which in turn evolves according to
the level set equation.

φt + c(x)|∇φ| = 0.

This can be solved accurately and efficiently using numerical Partial Differential Equation
(PDE) techniques. Unfortunately, the basic level set method is inappropriate for treating
evolving wavefronts because the solutions to this PDE will have fronts that merge upon
colliding, rather than pass through one another. One of the key issues in developing fixed
grid methods for evolving wavefronts is to sort the “branches” (an example of which is the
different fronts that occur in a swallowtail) because one can only interpolate between points
on the same branch. In standard ray tracing, branches can be traced along the markers. In a
fixed grid method, this is more difficult because points can represent different branches as
the wavefronts evolve. See [4] for an algorithm that automatically sorts different branches
in two dimensions, which is based on direct resolution of Hamilton–Jacobi equations and
coupled to transport equations linked to the geometrical spreading.

To obtain a fixed grid method appropriate for capturing wavefront self-intersection
Steinhoff and Fan [13] and Steinhoffet al. [14] proposed Dynamic Surface Extension
(DSE) methods. These schemes start from some spatially distributed representation of the
wavefront (similar to, but more general than, the level setφ representation), and the motion
is achieved by alternating between two steps: a simple short time evolution comparable to
ray tracing (but carried out on a fixed grid), and an extension step that updates the distributed
representation to reflect the new front location. DSE methods automatically give a uniform
resolution of expanding fronts by using a fixed spatial grid, and the fronts automatically
pass through one another rather than merging.

The original DSE methods are not well suited to certain fundamental self-intersection
problems such as the formation of swallowtails. In this paper, we develop a DSE scheme (the
Arrival Time DSE Method) to handle this fundamental problem as well as all other complex
intersections, including reflecting wavefronts and the motion of filaments (or more generally,
objects of codimension>1). We also discuss new methods for propagating intensity values
and for treating curvature-dependent flows and refracting wavefronts.
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The outline of the paper follows. In Section 2, we review the Closest Point DSE Method
and discuss its key properties. In Section 3, we give a new method (the Arrival Time
DSE Method), which produces a much more uniform representation of the wavefront.
Sections 4 and 5 explain how to extend the basic method to problems involving refraction
and reflection. In Section 6, we describe how to treat intensity by retaining other attributes of
the wavefront, such as wavefront curvature. Section 7 extends our approach to more general
curvature-dependent motions. Finally, in Section 8 we summarize our results and outline
some potential areas for future research. Throughout the paper, numerical experiments are
provided to validate our methods.

2. THE CLOSEST POINT DSE METHOD

To evolve self-intersecting wavefronts on a fixed grid, Steinhoff and Fan [13] proposed
Dynamic Surface Extension methods. The methods solve a separate, auxiliary problem in
addition to solving the equations of motion of a moving surface. This auxiliary problem
involves propagating information through space away from the surface as invariants along
characteristics or rays. These invariants are a set of variables, termed the “Defining Field” of
a surface, defined for each ray, that can be any sort of data that can be used to algebraically
compute the coordinates of the point of intersection of the ray with the surface. This set of
invariants can also include other quantities such as wavefront intensity or radius of curvature
at the point of intersection. It is this separate propagation of invariants with these particular
properties that enables fronts to automatically pass through one another rather than merging.

The cornerstone of DSE methods is to choose a suitable distributed representation of
the wavefront surface. The form of this representation depends on the problem, and it is
dictated by the information required to accurately and efficiently evolve the surface. For
example, one might store at each point in spacex a representation of the surface near some
“tracked point”TP(x) located on the surface. A two-step scheme is then used to evolve this
distributed representation for a short time1t . First, theEvolutionStep updates the local
surface representation at eachx based on the surface motion law atTP(x). During this
evolution, the representation may develop inconsistencies or become less well behaved, but
this is repaired in the second step, whichextendsthe representation from near the wavefront
(where it is most accurate) to points farther away, perhaps reassigning new tracked points
TP(x) to eachx in the process. Note that a variety of other surface properties such as
optical intensity may considered as part of the “representation,” and these can be evolved
and extended off the interface in this manner as well [14].

A particularly instructive DSE scheme is based on storing the actual coordinates of the
closest point on the surface. (See [13, 14] for a closely related scheme that also stores
information for the closest point on the surface, but using a different set of variables.) In
this section, we describe this Closest Point DSE Method and discuss its key properties.
Improvements and extensions to this basic method will be the focus of subsequent sections.

2.1. The Method

To construct a DSE scheme for wavefront propagation we must first select an appropriate
distributed wavefront representation, i.e., one well suited to representing self-intersecting
surfaces. For contrast, note that the level set method relies on a particular distributed surface
representation, namely the level set functionφ(x). This is often taken to be the (shortest)
distance fromx to the surface, with suitable signs. In the language of DSE, this can be
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viewed as letting the tracked point atx, TP(x), be the point on the wavefront closest tox,
CP(x), and the only local information we retain about the wavefront near this point is its
distance tox (with a sign). However, this representation (i.e.,φ) naturally produces mergings
(or curve annihilation) rather than allowing curves to pass through one another [10].

A better behaved and more convenient alternative is to store the coordinates of the
closest point itself, rather than just its distance; i.e., we represent the wavefront by the
value of the vector valued functionCP(x). This is smooth on the wavefront near self-
intersections (although it does have discontinuities off the wavefront, at points that are
equidistant between different parts of the surface). Further, this choice can equally well
represent geometries for which the distance function would be highly singular, such as
wavefronts with boundaries (i.e., a nonclosed surface in 3D, or a curve with endpoints in
2D) or objects of any codimension (e.g., points, curves, or surfaces in 3D). Also, note that
a closest-point representation is constantnormal to a surface whereas a distance function
representation (such as that used in level set methods) is constanttangentialto a surface [14].

For moving wavefronts, we must specify some additional piece of information since there
are at least two possible normal directions (more at kinks) for any curve or surface. We
prefer to store a unit vector in the direction of propagation because this choice automatically
generalizes to objects of arbitrary codimension. Using this representation in the Dynamic
Surface Extension approach gives the Closest Point DSE Method (CPDSE Method) for
moving a surface0⊂ Rn normal to itself with a speedc (which may depend on position):

TheCPDSE Method:
Initialize. For each pointx ∈ Rn: Set the initial tracked pointTP(x) equal to the closest
point (to x) on the initial surface00. Setn̂(x) equal to the surface normal at the tracked
pointTP(x), and letc denote the wavefront speed at the tracked point.

Repeat for all steps:
(1) Evolve the tracked pointTP(x) according to the local dynamics for a time1t :

TP(x)t = cn̂(x).
(2) Extendthe surface representation by resetting each tracked pointTP(x) equal to the

true closest point on the updated surface0, where0 is defined to be the locus of all
tracked points, ie,0={TP(y) | y∈ Rn}. Replace eacĥn(x) by the normal at the
updatedTP(x).

End.

Intuitively, the manner in which this method treats self-intersection is most easily un-
derstood by considering how it treats two colliding, planar waves. Initially, each nodal
tracked point value is set equal to the closest point on the nearest wavefront (Fig. 1a). These

FIG. 1. Two colliding planar waves and a sample grid nodex. (a) To initialize, the closest pointCP(x) of
the nearest wavefront is stored. (b) Evolution is carried out pointwise according toTP(x)t = cn̂(x). (c) During the
Extension Step, nodal values are set equal to the values at the true closest point.
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tracked points are updated during the Evolution Step according toTP(x)new=TP(x)original+
cn̂(x)1t (Fig. 1b). Notice that the updated tracked points are no longer the true closest points.
Finally, the Extension Step resets each nodal value to be a true closest point (Fig. 1c).

We now direct our attention to the Extension Step of the CPDSE Method.

2.2. The Extension Step

In practice, the Initialization Step of the CPDSE Method can often be handled analytically
in simple problems. More complicated wavefronts can be treated using fast tree-based
algorithms [15]. Implementation of the Evolution Step is also straightforward because each
tracked point is just updated according toTP(x)new=TP(x)original+ cn̂(x)1t . The final
Extension Step is more complicated and is typically divided into two parts, a search step
and an interpolation step (cf. [14]).

In the search step, the updated tracked point value for each node is set equal to the
closest of all tracked points from the previous step (localization of this step is possible—see
Section 3.3) [14]. Normal values are also transferred during this procedure. (Recall that
there is a normal value stored at each node as well as a tracked point. Once the closest of
all tracked points is found, its normal direction is also known because both tracked point
and normal values are stored at the same node.) This gives an improved approximation of
the closest point representation. Unfortunately, this process cannot create any new tracked
points so diverging wavefronts will lose resolution. Thus, a second interpolation step is
needed in order to maintain a uniform representation.

Steinhoffet al.carry out this interpolation by averaging over nearby nodes [14]. This very
simple approach is effective for a variety of interesting problems [14], but it can produce
spurious wavefronts in certain cases and is low order accurate. For these reasons, we consider
a higher order interpolation based on nearby neighbors. These neighbors (call themy and
z) are chosen so thatx, y, andz are collinear and roughly parallel to the wavefront (see
Fig. 2). If the tracked points forx andy are distinct and lie on the same smooth curve, then
an improved estimate for the closest point tox can be generated using the nodal values at
x andy (see Fig. 3). Similarly, an improved closest point estimate can be attempted using
the nodal values atx andz. The closest of these two results tox is taken to be the updated
tracked point value. The updated normal value is set equal to a unit vector parallel to the
updated tracked point minus the center of curvature of the interpolating curve. (The sign of
this unit vector is easily determined since its dot product with the normals for the endpoints
of the interpolating curve must be positive or else no interpolation occurs.)

Notice that this Extension Step does not yield a true closest point representation. However,
closest point values are expectednear the wavefront. Furthermore, this extension has the

FIG. 2. For a nodex we interpolate using 3 points (x, y andz) which are roughly parallel to the wavefront.
Takingθ to be the angle (x–y)⊥ forms with the horizontal axis we find 4 cases in 2D: (a)π
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.
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FIG. 3. (a) If the tracked pointsTP(x) andTP(y) for nodesx andy are far apart(‖TP(x)−TP(y)‖> 21x)
then we takeTP(x) to be the best estimate for the closest point tox. (b) If the corresponding normals are inconsistent,
we takeTP(x) to be the closest point estimate tox. Here, we assumeTP(x) andTP(y) lie on different wavefronts
whenever the angle between their normals is greater than 0.2. (c) Otherwise, an arc is drawn betweenTP(x) and
TP(y) based onTP(x), TP(y) andn̂(x). The desired estimate is given by the closest point on the arc tox.

useful property that every nodal value represents some tracked point on the wavefront.
Note also that every tracked point has a well-defined direction of propagation, even those
corresponding to points on the surface (such as corners), which do not have a well-defined
normal value.

We now direct our attention to how the CPDSE Method treats two prototype problems
in wave propagation: rarefaction fans and swallowtails.

2.3. Numerical Experiments

We now apply the CPDSE Method to the problem of evolving wavefronts according to a
constant normal velocity,Ev= cn̂. In these experiments, each front is plotted simply as the
locus of all tracked points at a given time,{TP(x) | x ∈G}, whereG is a uniform grid of
points on the domain.

First, consider the motion of a square curve moving outward with unit speed, as is shown
in Fig. 4. Using the CPDSE Method, a rarefaction fan is automatically and uniformly
generated. Notice that the Evolution Step always yields a closest point representation, so
the Extension Step does not change the tracked pointTP(x). Thus, the overall error is
comprised entirely of roundoff errors generated from the Initialization and Evolution Steps.

An entirely different swallowtail solution also occurs in many problems. For example,
consider an ellipse moving inward with unit speed (e.g., Fig. 5). Here, the front forms two

FIG. 4. Rarefaction fans are given exactly by the CPDSE Method. Here, a wavespeed equal to 1 was considered.
Discretization step sizes of1x= 1/80 and1t = 1/40 were used throughout the calculation. In this example (and
others throughout the report), wavefronts are visualized by plotting all nodal values. Notice that this simple
visualization can produce a dotted effect when the curve is aligned with the grid.
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FIG. 5. An ellipse evolving inward with unit speed: (a) initial ellipse, (b) Kinks form, (c) wavefront passes
through itself to form a swallowtail.

kinks (Fig. 5b) and passes through itself to form a swallowtail (Fig. 5c). Unfortunately, this
swallowtail solution is not adequately reproduced using the CPDSE Method. See Fig. 6 for
an illustration of how this flaw causes gaps in the surface which propagate and grow. (A plot
which essentially coincides with the exact solution is given in Fig. 10 in the next section.)

Thus this CPDSE Method is inadequate for treating the prototype swallowtail problem.
Indeed, we shall see in the next section that this deficiency is inherent to closest point repre-
sentations because they overrepresent corners when they are applied globally. Fortunately,
an alternative approach based on the idea of first arrival times is possible. This approach
will be the focus of the next section.

3. FIRST ARRIVAL TIMES

As demonstrated in the previous section, the CPDSE Method can produce gaps in the
surface. We now discuss a new method which gives a much more uniform representation
of the surface, and we validate our approach with numerical experiments.

FIG. 6. Using the CPDSE Method, swallowtails are not accurately reproduced. Gaps in the surface form, and
these propagate and grow. Here, a wavespeed equal to 1 was considered. Discretization step sizes of1x= 1/80
and1t = 1/40 were used throughout the calculation.
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FIG. 7. (a) When a swallowtail is small, the nodal values overrepresent corners. (b) Because large regions
are used to represent corners, only the small shaded region is left to capture the end of the swallowtail. This small
region will contain few (or no) grid points after the swallowtail is first formed.

3.1. The Method

The formation of gaps for the CPDSE Method is most easily understood by considering
how swallowtails are represented.

Consider, for example, the swallowtail representation shown in Fig. 7a. When the swal-
lowtail is small, nodal values overrepresent corners. Since large regions are used to repre-
sent corner points, few grid points are available to represent the end of the swallowtail (see
Fig. 7b). This uneven treatment leads to gaps in the surface which propagate and grow.

To obtain an improved result, a more uniform representation is needed. For example, we
can set each nodal value to be the point on the wavefront with theminimal arrival time
rather than the minimal distance. The minimal arrival time is the minimal time for the fronts
to reach the considered grid point when wavefront surfaces are front or back propagated. In
a homogeneous medium, without reflection, this implies that each nodal value is set equal
to the closest point on the wavefront that propagates directly to or from the node. Using
this representation, we find that redundancy is largely eliminated, and a greatly improved
approximation of the swallowtail is obtained (see Fig. 8). Unfortunately, arrival times are
often difficult and expensive to evaluate in the variable index of refraction case or when
reflections occur. Furthermore, even in a homogeneous medium, this approach requires a
more intricate search step since nodal values can only be updated when a nearby tracked
point travels directly towards the node (which rarely occurs).

Of course, we are not limited to representations that minimize distance or arrival times—a
minimization based on some combination of distance and direction of motion can also be
carried out. A particularly interesting choice arises when nodal values are set equal to the

FIG. 8. Minimizing arrival times rather than distance gives a more uniform representation of the surface.
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“Minimizing Point”

MP(x) = min
y∈{all nodes}

γ |(x − TP(y)) · n̂⊥(y)| + ‖x − TP(y)‖2 (1)

for γ >0. Notice that this gives a good agreement with the minimal arrival time representa-
tion near the wavefront: The first term alone equals zero for all points on the surface which
reachx when the surface is propagated or back propagated for a sufficiently long time. The
second term selects the nearest of these minimizing points.

Combining these ideas leads to the following modification of the CPDSE Method:

TheArrival Time DSE Method (ATDSE Method) :
Initialize. For each pointx: Set the tracked pointTP(x) equal to the minimizing pointMP(x)
on the initial surface00 for the minimization in Eq. (1). Set̂n(x) equal to the normal at
MP(x).

Repeat for all steps:
(1) Evolve the tracked pointTP(x) according to the local dynamics for a time1t :

TP(x)t = cn̂(x).
(2) Extendthe surface representation by replacing each tracked pointTP(x) by the

point MP(x) on the updated surface0={TP(y) | y∈ Rn} that minimizes Eq. (1).
Replace eacĥn(x) by the normal at the updatedMP(x).

End.

In practice, the performance of the method is rather insensitive to the choice ofγ >0
(γ should be finite—a method with an infiniteγ has the deficiency that it does not prefer
nearby wavefronts over distant ones), and so we simply takeγ = 1 in all our simulations (over
the unit square). As we shall see next, this simple method gives a uniform representation of
wavefronts and naturally treats the prototype swallowtail problem.

3.2. Numerical Experiments

Consider an ellipse evolving inward with unit speed as is shown in Fig. 5. As discussed
in the previous section, the CPDSE Method produces large gaps in the surface. A much
more uniform representation of the swallowtail is derived using the ATDSE Method (see,
e.g., Fig. 9). Over large times, this improvement leads to dramatically superior results, as
can be seen by comparing Figs. 6 and 10.

FIG. 9. (a) Using the CPDSE Method, the end of the swallowtail is lost. (b) By minimizing first arrival times,
a good representation of the entire wavefront is obtained.
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FIG. 10. Using an approximation to first arrival times, a uniform representation is achieved. Here, a wavespeed
equal to 1 was considered. Discretization step sizes of1x= 1/80 and1t = 1/40 were used throughout the
calculation.

Of course, we also want an estimate of how closely each tracked point approximates
the true surface. Analytically, anO((1x)3/1t) error should be produced over the length
of the computation because time steps are carried out exactly (to within roundoff) and a
quadratic interpolation step is used. In practice, we find that tracked points remain close to
the true solution surface. For example, in the test problem of Fig. 10f a very small error
(measured as theL1-distance of the tracked pointsTP(x) from the true solution surface0)
was produced that declined rapidly with1x. See Table I.

We now direct our attention to localization methods for improving the efficiency of DSE
schemes.

3.3. Localization

In previous sections, the search step was carried out globally. Although simple, this
approach can be expensive because at each grid point, all other tracked points must be

TABLE I

Errors for an Initial Ellipse, Mea-

sured asL1-Distance of Tracked Points

from Exact Solution Surface

1x Error

1/20 1.4e-6
1/40 3.7e-7
1/80 1.5e-8
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searched for a new minimizing point, leading toO(n2) operations per time step, wheren
is the total number of grid nodes.

Alternatively, a local search can be used over a radiusRof each grid node [14] to achieve
an O(n) operation count per step. Notice that in this case we must choose

R> c1t (2)

because information about the wavefront should propagate more quickly than the wavefront
itself [14]. Of course, this is a necessary and not a sufficient condition. In practice an
appropriate value ofR will depend strongly on the problem. Indeed, much larger values of
R are typically needed to treat interesting problems involving swallowtails. For example,
to obtain a good representation of the evolving wavefronts shown in Fig. 10 requires that
R> 1/8 whenc= 1 and1t = 1/40.

In our formulation, each grid node value represents some tracked point on the wavefront.
This fact allows us to design an algorithm that searchesall tracked points in a neighborhood
of the wavefront rather than a few tracked points in a neighborhood of each node. We
proceed as follows:

1. Initialize the updated nodal values for each nodex: TP(x)new=TP(x) andn̂(x)new=
n̂(x).

2. Evaluate

F(p,TP(x), n̂(x)) = |(p− TP(x)) · n̂⊥(x)| + ‖p− TP(x)‖2 (3)

for each tracked pointTP(x) and its corresponding normal valuen̂(x) and each nodep
which lies inside a disc of radiusr centered at the wave-front pointTP(x). Whenever
F(p,TP(x), n̂(x))< F(p,TP(p)new, n̂(p)new) an update is made to the new nodal values:
TP(p)new=TP(x) andn̂(p)new= n̂(x).

Notice that this approach has the advantage that all tracked point information near the
wavefront is instantaneously propagated globally away from the wavefront, so the propa-
gation speed requirement (2) no longer applies andr can be selected independently ofc
and1t .

This localization naturally leads to some modifications of the Extension Step. First, only
nodes which are within a distancer of the wavefront should be used for interpolations since
only these nodes are updated during the search. Also note that searching according to Eq. (1)
can cause neighboring nodes to represent different wavefronts (see Fig. 11b) which makes
interpolation impossible. Because the CPDSE Method does not exhibit this shortcoming
(see Fig. 11c), we carry out the Extension Step twice in the localized algorithm—once
with a search that minimizes distance and once using Eq. (1). Whichever result minimizes
expression (3) is used as the updated value at each node.

We have found that this simple, fast approach gives excellent results in a wide variety of
problems. In particular, the examples in the next three sections are carried out using this
localization.3

3 We use a radius of four cells throughout. This is somewhat arbitrary: Other values appear equally effective.
For example, using a radius of just two cells a solution of the swallowtail problem can be computed that essentially
coincides with the global result shown in Fig. 10.
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FIG. 11. (a) Before the search step. Consider 3 nodesx, y, andz and several neighboring tracked points:sss

(b) After the search step. If we search according to Eq. [1], the nodal values atx will describe the second wavefrontc2

since|(x−TP(x))·n̂⊥(x)|¿ |(x−TP(y))·n̂⊥(y)|. Neighboring values will belong to the first wavefront. Because
TP(x) belongs to a different wavefront than its neighbors, no interpolation will occur atx and resolution may be
lost. (c) After the search step. If we search according to distance, an interpolation at nodex is possible based on
the tracked pointsTP(x) andTP(z) and the normal̂n(x).

4. REFRACTION

The ATDSE Method described in the previous section applies to homogeneous media.
In problems where the wavespeed is piecewise constant, the direction of propagation will
change as the wavefront moves from one material to another. Specifically, the angle of
refraction will be given by Snell’s Law

Sn(θ) = arcsin

(
cb

ca
sin(θ)

)
(4)

whereθ is the angle of incidence of the ray andca andcb are the wavespeeds in the original
and final media (see, e.g., [8]).

To apply the ATDSE Method to this refractive case, we must take Snell’s Law into
account in the Evolution Step. The Extension Step of the algorithm remains unchanged.
Figure 12 gives a simple example of a refracting wavefront treated using this approach.
For the variable index of refraction case, we proceed in a similar fashion, except now the
Evolution Step is governed by the ray equations (see [8]),

d2X
dt2
= ∇X

(
n2

2

)
(5)

‖Xt‖2 = n(X)2, (6)

whereX is the coordinate of the ray being traced (or in our language, the coordinate of the
tracked point) andn(X)= 1/c(X) is the variable index of refraction.

Of course, physically, we expect that a reflected wave will also be produced when a
wavefront passes from one material to another. Fortunately, these reflected components are
straightforward to treat using methods discussed in the next section.

5. REFLECTION

When a ray traveling in a medium encounters a boundary, part of the incident ray is
reflected back into the medium. Very often, the direction of propagation of the reflected
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FIG. 12. Refraction is handled by applying Snell’s Law in the Evolution Step. Here, the wavespeed is 1 in the
upper region{(x, y) : y> 1/2− 0.2 cos(2πx)} and 1/2 in the lower region. Discretization step sizes of1x= 1/80
and1t = 1/20 were used throughout the calculation.

wave will be given by the Law of Reflection:the angle of reflection equals the angle of
incidence.

To apply the ATDSE Method to the reflective case, we must take the Law of Reflection
into account in the Evolution Step. The Extension Step of the algorithm remains unchanged.
Figure 13 gives an interesting example of a reflecting wavefront treated using this approach.
Although this simple method gives a very good representation of the surface, small gaps
occasionally form where wavefronts cross (see Fig. 13f). These gaps arise when too few
grid points are used to represent complicated reflecting wavefronts. See Fig. 14.

Fortunately, this problem can usually be overcome simply by refining the mesh (see
Fig. 16a). In more complicated problems, two tracked points may be stored at each node—
one for parts of the wavefront that have reflected an even number of times, the other for
parts that have reflected an odd number of times. As shown in Fig. 15, this approach gives a
more uniform representation of reflected kinks and an improved treatment of complicated
wavefronts.

We now direct our attention to another important property of wave propagation: the
intensity.

6. INTENSITY

Previous sections evolved wavefronts by propagating both position and normal values
away from the surface. In this section, we describe how to treat intensity by retaining other
attributes of the wavefront, such as wavefront curvature. Numerical experiments are also
carried out to validate our approach.
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FIG. 13. Reflections are handled by applying the Law of Reflection in the Evolution Step. Here, a wavespeed
equal to 1 was considered. Discretization step sizes of1x= 1/80 and1t = 1/20 were used throughout the
calculation.

FIG. 14. (a) When a kink reflects from a boundary, a rather complicated wavefront develops. (b) There are
too few grid points to represent dashed segments, so gaps form in the surface.

FIG. 15. If even (a) and odd (b) reflections are represented separately, then a more uniform treatment of the
wavefront is obtained.
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FIG. 16. Small gaps that form may be eliminated by (a) refining the mesh (here we have taken1x= 1/115)
or (b) treating odd and even reflections separately (here1x= 1/80).

6.1. The Method

To develop a method for evolving intensity values, we make use of a simple observation:
Away from degenerate cases, the intensity of a ray at timet is given by the intensity at
an earlier time,t0, multiplied by theexpansion ratio,4 ξ(t0, t). As shown in Fig. 17, the
two-dimensional expansion ratio for a homogeneous medium is just the initial radius of
curvature divided by the final radius of curvature; i.e.,

ξ(t0, t) = ρ(t0)

ρ(t)
. (7)

In three dimensions, it is easily shown [8] that the expansion ratio for a homogeneous
medium becomes

ξ(t0, t) = ρ1(t0)ρ2(t0)

ρ1(t)ρ2(t)
, (8)

whereρ1 andρ2 are the principal curvatures of the wavefront surface.
Thus, intensity values may be propagated along a ray using just the initial intensity, time

and principal curvature values. For example, in two dimensions the intensity is given by

I (t) = I0

(
ρ(t0)

ρ(t0)+ c(t − t0)

)
(9)

in terms of these quantities. Notice that this simple analytical approach applies even when
the intensity is infinite (e.g., at a focus) at some intermediate time. Indeed, even degenerate
cases (i.e., the radius of curvature is initially zero) may be treated analytically. See [8] for
further details.

When a wavefront is reflected or refracted, however, curvature and intensity values can
change and Eq. (9) cannot be used. Fortunately, updated values for these quantities are easily
calculated. After reflection, intensity is unchanged and the curvature of a 2D wavefront is

4 The expansion ratiois a measure of the expansion of the cross-section of a tube of rays. See Fig. 17 for a
derivation of the expansion ratio in two dimensions and reference [8] for a derivation in the general case.
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FIG. 17. In two dimensions, the expansion ratio is the initial length of a wavefront element divided by the
final length. For a homogeneous medium,ξ(t0, t)= dL(t0)

dL(t)
= θρ(t0)

θρ(t)
= ρ(t0)

ρ(t)
.

given by

κreflected= κincident− 2

cos(θ)
κboundary, (10)

whereκincident is the curvature of the incident wavefront,θ is the angle of incidence and
κboundary is the curvature of the reflective surface. After refraction, the curvature of a 2D
wavefront is given by

κrefracted= Sn′(θ)√
1+ (1− ( cb

ca

)2)
tan2(θ)

κincident+ Sn′(θ)− 1√
1− ( cb

ca
sin(θ)

)2
κboundary, (11)

where Sn′(θ) is the derivative of Snell’s Law (4),κboundaryis the curvature of the boundary
between media andca andcb are the propagation speeds in the original and final media.
Updated intensity values after refraction are given by

Irefracted

Iincident
= cos(θ)

cos(Sn(θ))
. (12)

Thus, we treat intensity by storing curvature and intensity values at an initial timet0
(which is also stored). These stored values are updated (using Eqs. (10–12)) whenever a
reflection or refraction occurs, to give an explicit formula (9) for intensity.

We now use this approach to evolve the intensity of a propagating, two-dimensional
wavefront and compare our results to standard ray tracing.

6.2. Numerical Experiments

Consider the evolution of the initially circular wavefront given in Fig. 18a. Using the
methods of the previous section, intensity values are determined for each tracked point
after a variety of reflections and refractions. A color visualization of these intensity values
is given in Fig. 18. Plotting the intensity as a function of arclength for the lower curve at
t = 0.75 gives the results in Fig. 19. These intensity values agree well with the exact solution
since they have less than a 2% relative error (as measured in the maximum norm) when
compared to a well-resolved ray tracing calculation.

In all our calculations, intensity and curvature values for new (i.e., interpolated) points
are derived by linearly interpolating the values of neighboring points at the current time.
Higher order interpolations may be preferred when very accurate results are sought.
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FIG. 18. Intensity is calculated by propagating out curvature values. Here, the wavespeed is 1 in the middle
region {(x, y) : 0.2+ 0.1 cos(2πx)≤ y< 0.5− 0.1 cos(2πx)} and 1/2 in the upper region. Discretization step
sizes of1x= 1/80 and1t = 1/20 were used throughout the calculation.

7. CURVATURE-DEPENDENT MOTIONS

In previous sections, we described methods for evolving wavefronts according to position-
dependent velocities. However, asymptotic models for physical processes often yield equa-
tions of motion for a surface moving with a velocity that is a function of its local
geometry, i.e., a function of local normal, curvature, and derivatives of these quantities
[11, 12, 19]. Toward this end, we now consider an extension of the CPDSE Method
to more general curvature-dependent motions and validate our approach with numerical
experiments.

FIG. 19. Intensity as a function of arclength for the lower curve of Fig. 18f.
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7.1. The Method

A particularly fundamental motion arises when the normal velocity equals the mean
curvature of the surface. For this important case, a simple DSE scheme can be constructed.
Moreover, this scheme applies to motion by mean curvature for objects of any codimension.
To illustrate this, we will develop the model for the arbitrary codimension case, and apply
it to a curve in three dimensions with a velocity equal to its vector curvatureκn̂.

We begin by noting that the vector mean curvature for a surface of arbitrary codimension
is given by

κn̂ = −1∇
(

d2

2

)
, (13)

whereκ is the local mean curvature andd is the distance to the surface (see, e.g., [1]).
Taking into account that

d∇d = x − CP(x),

whereCP(x) is the closest point tox on the surface we obtain a very simple expression for
vector mean curvature:

κn̂ = −1(x − CP(x)) = 1CP(x).

Thus, motion by mean curvature for surfaces of arbitrary codimension can be achieved by
replacing the Evolution Step of the CPDSE Method by

TP(x)t = 1TP|TP(x)

to give a method for mean curvature motion,

TheClosest Point Method for Mean Curvature Motion:
Initialize. For each pointx ∈ Rn: Set the initial tracked pointTP(x) equal to the closest
point (tox) on the initial surface00.

Repeat for all steps:
(1) Evolve the tracked pointTP(x) according to the local dynamics for a time1t :

TP(x)t =1TP|TP(x).
(2) Extendthe surface representation by resetting each tracked pointTP(x) equal to

the true closest point on the updated surface0, where0 is defined to be the locus
of all tracked points, ie,0={TP(y) | y∈ Rn}.

End.

Other curvature dependent velocities are possibly by replacing the Evolution Step by

TP(x)t = F(1TP|TP(x) · n̂) n̂

sinceκ =1CP|CP(x) · n̂. Of course, it is crucial to evaluate the Laplacian term at the closest
point since Eq. (13) is only validat the surface.

We now validate our algorithm with some numerical experiments.
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FIG. 20. The curvature motion of a filament,vn= κn̂.

7.2. Numerical Experiments

For our final example, consider the curvature motion of a periodic spiral in three dimen-
sions,

x = 0.4 sin(2πs),

y = 0.4 cos(2πs),

z = s.

Here, it is easily shown that the exact solution is also a spiral, but with a radius that shrinks
according to the ordinary differential equation,

ṙ = − r

r 2+ 1
4π2

.

Using the algorithm of the previous section, the maximum error in the position of the
filament at timet = 0.1 was computed for several1x and1t was taken to be14(1x)2 in
order to achieve stable results. The results for a number of experiments are reported in
Table II. These results are suggestive of an approximately second order error in the position
of the front.

In all calculations, the standard second-order finite difference approximation of the
Laplacian was used with forward Euler time stepping. Interpolated values of the Laplacian
were derived using linear interpolation. Extension Steps were carried out by fitting a spline
to the filament and reinitializing the closest point representation at each step. Note that this
simple discretization assumes that there are no mergings. It would be particularly inter-
esting to develop efficient numerical methods for intersecting wavefronts and study their
theoretical properties (e.g., convergence, CFL restriction, etc.).

TABLE II

Errors for the Curvature Motion of a Filament

1x Error Convergence rate

1/10 0.00688 —
1/20 0.00159 2.1
1/30 0.00071 2.0
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8. SUMMARY AND TOPICS FOR FUTURE RESEARCH

In this work, we have considered a class of Dynamic Surface Extension methods based
on an approximation of first arrival times instead of closest points. Our approach uses a
spatially distributed representation of the surface that maintains a uniform and balanced
resolution during the formation of complicated self-intersecting fronts (such as swallow-
tails) which are not well treated by the original Closest Point DSE Method. Simple methods
for treating refraction, reflection, and intensity are also provided and validated with nu-
merical experiments. Finally, a surprisingly simple generalization is given for interesting
geometric motions, such as mean curvature flow. As with other DSE schemes our methods
automatically treat points, filaments, and surfaces of arbitrary codimension, which we have
illustrated with curvature motion of a filament in three dimensions.

A variety of interesting topics for future research are still open. For example, notice
that our approach requires a thresholding step to determine when interpolations occur (see
Section 2.2). As we saw throughout the paper, it is often adequate to base this thresholding
on the position and normal values of tracked points. Of course, no single threshold is
adequate for all problems. It would be interesting to investigate robust decisions based
on propagating out other quantities. For example, one might consider propagating initial
position and normal values along each ray (cf. [16]), since interpolations can only occur
when these quantities are approximately equal.

Other potential areas for future research include studies of the method’s three-dimensional
performance (cf. [14]), especially for optical intensity calculations. It would also be very
interesting to extend the method to include the effects of geometrical diffraction (cf. [8]),
i.e., the bending of the wavefront as it passes by an obstacle.

There is also a great deal to explore in terms of using this type of representation to
move objects of more complex topology and geometry, such as surfaces with boundaries
(or curves with endpoints), objects of composite topology (such as a filament attached to a
sheet), and surfaces or curves with triple point junctions.

Another major direction would be to couple these self-intersecting wavefront represen-
tations to physical processes occurring off the surface. For example, it would be interesting
to treat the case of multiply intersecting shock wave fronts coupled to surrounding gas dy-
namics. Note that DSE methods are particularly well suited for coupling to Eulerian codes
because both utilize fixed computational grids.

Finally, further work in the area of curvature-dependent motions is also possible. Com-
putationally, the construction of fast extension methods for general surfaces of arbitrary
codimension would be of great practical importance. Theoretically, it would be interesting
to study the convergence properties of the method. It would be particularly interesting to
determine if surfaces fatten (or develop interiors) when mergers occur. See [2] for a detailed
discussion on the “fattening phenomenon.”

ACKNOWLEDGMENTS

We thank John Steinhoff for many helpful discussions on Dynamic Surface Extension methods. We also thank
Ron Fedkiw for interesting discussions on applications of intensity propagation.

REFERENCES

1. L. Ambrosio and H. Soner, Level set approach to mean curvature flow in arbitrary codimension,J. Diff.
Geometry43, 693 (1996).



A FIXED GRID FOR INTERSECTING WAVEFRONTS 21

2. G. Bellettini, M. Novaga, and M. Paolini, An example of three dimensional fattening for linked space curves
evolving by curvature,Comm. Partial Diff. Equations23(9–10), 1475 (1998).

3. J.-D. Benamou, Big ray tracing: Multivalued travel time field computation using viscosity solutions of the
eikonal equation,J. Comput. Phys.128(2), 463 (1996).

4. J.-D. Benomou, Direct computation of multivalued phase space solutions for Hamilton–Jacobi equations,
CPAM52(11), 1443 (1999).

5. Y. Brenier and L. Corrias,Capturing Multivalued Solutions of the Eikonal Equation(technical report, INRIA,
1995).

6. M. Brown, Numerical considerations in ray tracing and ray expansions of the acoustic wavefield,J. Acoustic.
Soc. Am. Aug.15 (1984).

7. E. Fatemi, B. Engquist, and S. Osher, Numerical solution of the high frequency asymptotic expansion for the
scalar wave equation,J. Comput. Phys.120, 145 (1995).

8. J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation
and Maxwell’s equations, inSurveys in Applied Mathematics, edited by J. B. Keller, D. W. McLaughlin, and
G. C. Papanicolaou (Plenum, New York, 1995), pp. 1–82.

9. G. Lambare, P. Lucio, and A. Hanyga, Two dimensional multivalued traveltime and amplitude maps by
uniform sampling of a ray field,Geophys. J. Int.125(2), 584 (1996).

10. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton–Jacobi formulations,J. Comput. Phys.79, 12 (1988).

11. P. Pelce (Ed.),Dynamics of Curved Fronts(Academic Press, Boston, 1988).

12. J. Soulettie, J. Vannimenus, and R. Stora (Eds.),Chance and Matter(Elsevier, North-Holland, 1987). [See
the article of Langer, in particular]

13. J. Steinhoff and M. Fan,Eulerian Computation of Evolving Surfaces, Curves and Discontinuous Fields
(technical report, University of Tennessee Space Institute, Tullahoma, TN 37388, 1998).

14. J. Steinhoff, M. Fan, and L. Wang, A new Eulerian method for the computation of propagating short acoustic
and electromagnetic pulses,J. Comput. Phys.157, 683–706 (2000).

15. J. Strain, Fast tree-based redistancing for level set computations,J. Comput. Phys.152, 648 (1999).

16. W. Symes,A Slowness Matching Finite Difference Method for Traveltimes beyond Transmission Caustics
(technical report, Dept. of Computational and Applied Mathematics, Rice University, Houston, TX 77005,
1996).

17. C. Tam, Computational aeroacoustics: Issues and methods,AIAA J.33(10), 1788 (1995).

18. V. Vinje, E. Iversen, and H. Gjoystdal, Traveltime and amplitude estimation using wavefront construction,
Geophysics58, 1157 (1993).

19. J. Yao and D. S. Stewart, On the dynamics of multi-dimensional detonation,J. Fluid Mech.309, 225 (1996).


	1. INTRODUCTION
	2. THE CLOSEST POINT DSE METHOD
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.

	3. FIRST ARRIVAL TIMES
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	TABLE I
	FIG. 11.

	4. REFRACTION
	5. REFLECTION
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.

	6. INTENSITY
	FIG. 17.
	FIG. 18.
	FIG. 19.

	7. CURVATURE-DEPENDENT MOTIONS
	FIG. 20.
	TABLE II

	8. SUMMARY AND TOPICS FOR FUTURE RESEARCH
	ACKNOWLEDGMENTS
	REFERENCES

